256 research outputs found

    Web-based visualization of gridded dataset usings OceanBrowser

    Full text link
    OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis)

    Task 4.5 : Training

    Full text link
    Copernicus Marine Environment Monitoring Servic

    Interpolation of SLA Using the Data-Interpolating Variational Analysis in the Coastal Area of the NW Mediterranean Sea

    Full text link
    The spatial interpolation of along-track Sea-Level Anomalies (SLA) data to produce gridded map has numerous applications in oceanography (model validation, data assimilation, eddy tracking, ...). Optimal Interpolation (OI) is often the preferred method for this task, as it leads to the lowest expected error and provides an error field associated to the analyzed field. However, the method suffers from limitations such as the numerical cost (due to the inversion of covariance matrices) as well as the isotropic covariance function, generally employed in altimetry. The Data-Interpolating Variational Analysis (DIVA) is a gridding method based on the minimization of a cost function using a finite-element technique. The cost function penalizes the departures from observations, the smoothness of the gridded field and physical constraints (advection, diffusion, ...). It has been shown that DIVA and OI are equivalent (provided some assumptions on the covariances are made), the main difference is that in DIVA, the covariance function is not explicitly formulated. The technique has been previously applied for the creation of regional hydrographic climatologies, which required the processing of a large number of data points. In this work we present the application and adaptation of Diva to the analysis of SLA in the Mediterranean Sea and the production of weekly maps of SLA in this region. The peculiarities of SLA along-track data are addressed: • number of observations: the finite-element technique coupled to improvements in the matrix inversion (parallel or iterative solvers) lead to a decrease of the computational time, meaning that sub-sampling of the initial data set is not required. • quality of the different missions: the weight attributed to each data point can be easily set according to the satellite that provided the observations, so that different measurement noise variances are considered. • spatial correlation scale: it varies spatially in the domain according to the value of the Rossby radius of deformation. • long-wavelength errors: each data point is associated a class, and a detrending technique allows the determination of the trend for each class, leading to a reduction of the inconsistencies between missions. • anisotropy of physical coastal features: a pseudo-velocity field derived from regional bathymetry enhances the correlations along the main currents. Particular attention will be paid to the influence of this constraint in the coastal area. The analysis and error fields obtained over the Mediterranean Sea are compared with the available gridded products from AVISO. Different ways to compute the error field are compared. The impact of the use of multiple missions to prepare the gridded fields is also examined. In situ measurements from an intensive multi-sensor experiment carried out north of the Balearic Islands in May 2009 serve to assess the quality of the gridded fields in the coastal area.SeaDataNet I
    • …
    corecore